NOTE ON MATH 2060B: MATHEMATICAL ANALYSIS II: 2019-20

CHI-WAI LEUNG

1. RIEMANN INTEGRABLE FUNCTIONS

We will use the following notation throughout this chapter.

(i): All functions f, g, h... are bounded real valued functions defined on [a,b] and m < f < M on
[a,b] .

(ii): Let P :a = 29 < 1 < .... < x, = b denote a partition on [a,b]; Put Az; = z; — z;—1 and
| P|| = max Ax;.

(iii): M;(f, P) :=sup{f(x):x € [xi—1,zi}; mi(f, P) == inf{f(x) : x € [x;_1,2;}.
Set wi(f, P) = Mi(f, P) — mi(f, P).

(iv): (the upper sum of f): U(f, P):= > M;(f, P)Ax;
(the lower sum of f). L(f, P):=>_ m;(f, P)Ax;.

Remark 1.1. [t is clear that for any partition on [a,b], we always have

The following lemma is the critical step in this section.

Lemma 1.2. Let P and Q be the partitions on [a,b]. We have the following assertions.

(i) If P C Q, then L(f, P) < L(f,Q) < U(f,Q) < U(f,P).
(i) We always have L(f, P) < U(f,Q).

Proof. For Part (i), we first claim that L(f, P) < L(f,Q) if P C @. By using the induction on
[ := #Q — #P, it suffices to show that L(f,P) < L(f,Q)asl=1. Let P:a=xo<x1 < ---<xp=0>
and @ = P U {c}. Then ¢ € (zs_1,x5) for some s. Notice that we have

ms(f7 P) < min{ms(f7 Q)a ms+1(f7 Q)}
So, we have

ms(f7 P)(I’s - xsfl) < ms(f7 Q)(C - 33'3,1) + merl(fa Q)(xs - C)‘

This gives the following inequality as desired.
(L1)  L(f,Q) = L(f, P) = my(f. Q)¢ — 1) + a1 (£, Q) (s — ¢) — my(f, P) (s — 1) = 0.

Now by considering — f in the Inequality 1.1 above, we see that U(f,Q) < U(f, P).
For Part (i), let P and @ be any pair of partitions on [a, b]. Notice that P U @ is also a partition on
[a,b] with P C PUQ and Q C PUQ. So, Part (i) implies that

L(f,P) < L(f,PUQ) <U(f,PUQ) <U(f,Q).
The proof is complete. O
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The following plays an important role in this chapter.
Definition 1.3. Let f be a bounded function on [a,b]. The upper integral (resp. lower integral) of f
over [a, b], write fabf (resp. f;f), is defined by

)

/ f=if{U(f, P): P is a partation on [a,bl]}.

a

(resp.

/bf = sup{L(f, P) : P is a partation on [a,b]}.)

Notice that the upper integral and lower integral of f must exist by Remark 1.1.

Proposition 1.4. Let f and g both are bounded functions on [a,b]. With the notation as above, we

always have
(i) B
/ab r< 't

(i) ['(~f)=—['t.

(iii) B
/abf+/abg§/ab(f+g)§/:(f+g)S/aber :g.

Proof. Part (i) follows from Lemma 1.2 at once.
Part (i7) is clearly obtained by L(—f, P) = —=U(f, P).
For proving the inequality f;f + ffg < ff(f + g) < first. It is clear that we have L(f, P)+ L(g, P) <

L(f + g, P) for all partitions P on [a,b]. Now let P; and P, be any partition on [a,b]. Then by Lemma
1.2, we have

b
L(f,P1) + L(g, ) < L(f,PLUP) + L(g,PLUP) < L(f + g, PL U P,) S/ (f +9).

So, we have

(1.2) /abf+/abg§/ab(f+g)-

As before, we consider —f and —g in the Inequality 1.2, we get E(f +g) < T;f +f7bg as desired. [

The following example shows the strict inequality in Proposition 1.4 (ii) may hold in general.

Example 1.5. Define a function f,g:[0,1] — R by
1 if xe€(0,1]NQ;
Fa) = { feel0.1nQ

-1 otherwise.



and

1 otherwise.

o(a) = {—1 if x€[0,1]NQ;

Then it is easy to see that f + g =0 and

So, we have

We can now reaching the main definition in this chapter.

Definition 1.6. Let f be a bounded function on [a,b]. We say that f is Riemann integrable over [a, b]
if fbaf = f;f In this case, we write f; f for this common value and it is called the Riemann integral
of f over [a,b].

Also, write R[a,b] for the class of Riemann integrable functions on [a,b].

Proposition 1.7. With the notation as above, R[a,b] is a vector space over R and the integral

/ fERabH/fER

defines a linear functional, that is, af + Bg € Rla,b] and fa (af + Bg) = af;f + »Bffg Jor all
fyg € Rla,b] and o, B € R.

Proof. Let f,g € R[a,b] and o, f € R. Notice that if @ > 0, it is clear that fjbaf = O‘T:f = afabf -
af;f = fabaf. Also, if o < 0, we have fabaf = oafabf = ozf(ff = ozfabf = f(faf. Therefore, we have

ffozf = ozf;f for all & € R. For showing f + g € R[a,b] and ff(f—l—g) = fff+f:g, these will
follows from Proposition 1.4 (ii7) at once. The proof is finished. O

The following result is the important characterization of a Riemann integrable function. Before
showing this, we will use the following notation in the rest of this chapter.
For a partition P:a=20<x1 < ---<xp=band 1 <17 <n, put

wi(f, P) = sup{|f(z) — f(a')| : @,2" € [wi1, 2:]}.
It is easy to see that U(f, P) — L(f, P) = > i  wi(f, P)Ax;.

Theorem 1.8. Let f be a bounded function on [a,b]. Then f € Rla,b] if and only if for all e > 0,
there is a partition P :a =x9 < --- <z, = b on [a,b] such that

(1.3) 0<U(f,P Zwl f, P)Az; < e.
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Proof. Suppose that f € Ra,b]. Let € > 0. Then by the definition of the upper integral and lower

integral of f, we can find the partitions P and @ such that U(f, P) < fff + ¢ and fff —e < L(f,Q).
By considering the partition P U (), we see that o

b )
/f—a<L<f,Q>gL(f:Pu@)5U<f,PUQ>SU<f,P></f+a.

Since f(ff = f;f = fabf, we have 0 < U(f,PUQ) — L(f,PUQ) < 2¢. So, the partition PUQ is as
desired. o

Conversely, let € > 0, assume that the Inequality 1.3 above holds for some partition P. Notice that
we have

L(f,P) < /abf < /abf <U(f,P).

So, we have 0 < Tff — fff < ¢ for all € > 0. The proof is finished. O

Remark 1.9. Theorem 1.8 tells us that a bounded function f is Riemann integrable over [a,b] if and
only if the “size” of the discontinuous set of f is arbitrary small.

Example 1.10. Let f: [0,1] — R be the function defined by

1 if © = 2, where p, q are relatively prime positive integers;
fl@)=47 P

0 otherwise.
Then f € R[0,1].
(Notice that the set of all discontinuous points of f, say D, is just the set of all (0,1] N Q. Since the
set (0,1] N Q is countable, we can write (0,1] N Q = {21, z2,....}. So, if we let m(D) be the “size” of
the set D, then m(D) = m(U;21{zi}) = Yoy m({z}) = 0, in here, you may think that the size of
each set {z;} is 0. )
Proof. Let € > 0. By Theorem 1.8, it aims to find a partition P on [0, 1] such that

U(f,P) —L(f,P) <E.

Notice that for x € [0, 1] such that f(z) > ¢ if and only if x = ¢/p for a pair of relatively prime positive
integers p, ¢ with }% > e. Since 1 < g < p, there are only finitely many pairs of relatively prime positive
integers p and ¢ such that f(%) >e. So, if welet S :={x €0,1]: f(x) > ¢}, then S is a finite subset

of [0,1]. Let L be the number of the elements in S. Then, for any partition P:a =9 < -+ < z, = 1,
we have

n
i=1 ©Ti—1,2:]NS=0  i:[zi—1,x,]NSHAD
Notice that if [z;—1,2;] NS = 0, then we have w;(f, P) < ¢ and thus,
Z wi(f, P)Az; <e Z Azx; <e(1-0).
i:[zi_l,zi]ﬁszm i:[wi_l,wi}ﬂS:@
On the other hand, since there are at most 2L sub-intervals [z;_1, 2;] such that [z;—1,2;] NS # () and
wi(f,P) <1foralli=1,..,n, so, we have

SN wlhPA <1 Y Az <2L|P|.

i:[z‘ifl,zi]ﬂS;ﬁ@ i:[mi,l,xi}ﬂs;é@



We can now conclude that for any partition P, we have
n
> wi(f, P)Az; < e+ 2L||P|.
i=1

So, if we take a partition P with || P| < e/(2L), then we have > " | w;(f, P)Az; < 2e.
The proof is finished. H

Proposition 1.11. Let f be a function defined on |a,b]. If f is either monotone or continuous on
[a,b], then f € R[a,b].

Proof. We first show the case of f being monotone. We may assume that f is monotone increasing.
Notice that for any partition P : a = xg < --+ < z,, = b, we have w;(f, P) = f(x;) — f(xi—1). So, if
|P|| < e, we have

D wilf, P)Az =Y (f(wi)—f(wi1)Axs < [P (f(@i)—f (i) = [[PI(f(b)—f(a) < e(f(b)—f(a)).
i=1 i=1 i=1

Therefore, f € Rla,b] if f is monotone.

Suppose that f is continuous on [a,b]. Then f is uniform continuous on [a,b]. Then for any € > 0,
there is 6 > 0 such that |f(z) — f(2)| < € as x, 2’ € [a,b] with |z — 2’| < J. So, if we choose a partition
P with ||P|| < 6, then w;(f, P) < ¢ for all i. This implies that

Zwi(f, P)Az; < 52 Az; =¢e(b—a).
i=1 i=1
The proof is complete. O

Proposition 1.12. We have the following assertions.

(i) If 9 € Rla,b] with f < g, then [} f < [} g.
(ii) If f € Rla,b], then the absolute valued function |f| € Rla,b]. In this case, we have |fff| <

b
Ja 11
Proof. For Part (i), it is clear that we have the inequality U(f, P) < U(g, P) for any partition P. So,

we have [7f = [ < [J9= [} g.

For Part (i7), the integrability of |f| follows immediately from Theorem 1.8 and the simple inequality
A1) = [FI")] < [f(@") = f(2")] for all a’,2" € [a,b]. Thus, we have U(|f],P) — L(|f|,P) <
U(f,P)— L(f,P) for any partition P on [a, b].

Finally, since we have —f < |f| < f, by Part (i), we have ]fff| < f; |f| at once. O

Proposition 1.13. Let a < ¢ < b. We have f € R[a,b] if and only if the restrictions f|(, € Rla, c]
and flicp € Rlc,b]. In this case we have

(1.4) /abfz/achr/cbf-

P?“OOf. Let fl = f’[a,c} and f2 = f’[qb]'
It is clear that we always have

U(f1,P1) — L(f1, P1) + U(f2, P2) — L(f2, P2) = U(P, f) — L(f, P)

for any partition P; on [a,c] and P, on [c,b] with P = P, U P.
From this, we can show the sufficient condition at once.
For showing the necessary condition, since f € R[a,b], for any € > 0, there is a partition @ on [a, ]
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such that U(f,Q) — L(f,Q) < € by Theorem 1.8. Notice that there are partitions P; and P; on [a, ]
and [c, b] respectively such that P := Q U {c} = P U P,. Thus, we have
U(f1, 1) = L(f1, P1) + U(f2, P2) — L(f2, P2) = U(f. P) — L(f,P) < U(f,Q) — L(f,Q) <.

So, we have f; € R|a,c| and fs € R]c,b].
It remains to show the Equation 1.4 above. Notice that for any partition P; on [a,c] and P on [, b],
we have

b b
L(fl,P1)+L(f2,P2)=L(f7P1UP2)S/f:/ f

So, we have f ac f+ f Cb < f: f- Then the inverse inequality can be obtained at once by considering
the function —f. Then the resulted is obtained by using Theorem 1.8. O

Proposition 1.14. Let f and g be Riemann integrable functions defined ion [a,b]. Then the pointwise
product function f - g € R|a,b].

Proof. We first show that the square function f? is Riemann integrable. In fact, if we let M =
sup{|f(z)| : € [a,b]}, then we have wi(f2, P) < 2Mwy(f, P) for any partition P : a = 29 < --- <
an = b because we always have |f2(z) — f2(2')| < 2M|f(z) — f(2)| for all z,2" € [a,b]. Then by
Theorem 1.8, the square function f? € R|a,b].

This, together with the identity f g = %((f +9)% — f2 — ¢?). The result follows. O

Remark 1.15. In the proof of Proposition 1.14, we have shown that if f € Rla,b], then so is its
square function f?. However, the converse does not hold. For exzample, if we consider f(z) = 1 for

r€QnJ0,1] and f(z) = —1 for x € Q°N[0,1], then f ¢ R[0,1] but f2=1 on [0,1].

Proposition 1.16. (Mean Value Theorem for Integrals)
Let f and g be the functions defined on [a,b]. Assume that f is continuous and g is a non-negative
Riemann integrable function. Then, there is a point & € (a,b) such that

b b
(1.5) / f(@)g(x)dz = £(€) / o(x)dz.

Proof. By the continuity of f on [a, b], there exist two points 1 and x2 in [a, b] such that
f(x1) =m :=min f(z); and f(x2) = M := max f(x).
We may assume that a < x7 < 22 < b. From this, since g < 0, we have

mg(z) < f(x)g(z) < Mg(x)

for all z € [a,b]. From this and Proposition 1.14 above, we have

b b b
m/gg/MSM/g
a a a

So, if f; g = 0, then the result follows at once.
We may now suppose that | f g > 0. The above inequality shows that
Jo !
m = f(z1) < }bgg < f(z2) = M.
a

Therefore, there is a point £ € [z1, 2] C [a, b] so that the Equation 1.5 holds by using the Intermediate
Value Theorem for the function f. Thus, it remains to show that such element £ can be chosen in

(a,b).




Let a < x1 < 9 < b be as above.

If 1 and z9 can be found so that a < 1 < zy < b, then the result is proved immediately since
€ € [x1,22] C (a,b) in this case.

Now suppose that z; or x2 does not exist in (a,b), i.e., m = f(a) < f(z) for all z € (a,b] or
f(z) < f(b) = M for all z € [a,b).

Claim 1: If f(a) < f(z) for all z € (a,b], then f fg> f(a f g and hence, & € (a,x2] C (a,b).

For showing Claim1, put h(z) := f(z) — f( ) for « € [a,b]. Then h is continuous on [a,b] and h > 0
on (a,b]. This implies that fcd h > 0 for any subinterval [c,d] C [a,b]. (Why?)

On the other hand, since fbg = fbg > 0, there is a partition P : a = 29 < -+ < =, = b so that
L(g, P) > 0. This implies that mg (g, P) > 0 for some sub-interval [z;_1,xg]. Therefore, we have

/hg>/ hg > my(g, )/ h > 0.
k-1

Hence, we have f fg> f(a f g. Claim 1 follows.

Similarly, one can show that if f(x) < f(b) = M for all = € [a,b), then we have f fg < f(b f g.
This, together with Claim 1 give us that such £ can be found in (a,b). The proof is ﬁmshed O

2. FUNDAMENTAL THEOREM OF CALCULUS

Now if f € Rla,b], then by Proposition 1.13, we can define a function F : [a,b] — R by

0 ifc=a
1) Flo) = {f;f ifa<c<b.

Theorem 2.1. Fundamental Theorem of Calculus: With the notation as above, assume that
f € Rla,b], we have the following assertion.
(i) If there is a continuous function H on [a,b] which is differentiable on (a,b) with H = f,
then f;f = H(b) — H(a). In this case, H is called an indefinite integral of f. (note: if
H, and Hy both are the indefinite integrals of f, then by the Mean Value Theorem, we have
Hy; = Hy + constant).
(ii) The function F defined as in Eq. 2.1 above is continuous on [a,b]. Furthermore, if f is
continuous on [a,b], then F' exists on (a,b) and F' = f on (a,b).

Proof. For Part (i), notice that for any partition P :a =x9 < --- < 2, = b, then by the Mean Value
Theorem, for each [x;_1,z;], there is £ € (21, x;) such that F(z;) — F(x;—1) = F'(§)Ax; = f(§)Aw;.
So, we have

P) <Y f(©)Aw; =) F(w:) = F(wi1) = F(b) = F(a) <U(f, P)

for all partitions P on [a,b]. This gives

/abfzfabféF(b)—F(a) S/abfz/abf
as desired. o

For showing the continuity of F' in Part (ii), let a < ¢ < x < b. If |f| < M on [a,b], then we have
|F(x)—F(c)| = | [ f| < M(z—c). So,limg .t F(z) = F(c). Similarly, we also have lim, . F(z) =
F(c). Thus F is continuous on [a, b].

Now assume that f is continuous on [a, b]. Notice that for any ¢ > 0 with a < ¢ < ¢+t < b, we have

inf f(x)gl(F( +1) / f< sup f(x).

x€[c,c+t] t z€[c,c+t]



8 CHI-WAI LEUNG

1 1
Since f is continuous at ¢, we see that thr(ﬁr g(F(c—i—t) —F(c)) = f(c). Similarly, we have tlim —(F(c+
—

—0—t

t) — F(c)) = f(c). So, we have F'(c) = f(c) as desired. The proof is finished. O

3. RIEMANN SUMS AND CHANGE OF VARIABLES FORMULA

Definition 3.1. For each bounded function f on |a,b]. Call R(f, P,{&}) = > f(&)Ax;, where
& € [zi—1,xi], the Riemann sum of f over [a,b].
We say that the Riemann sum R(f,P,{&}) converges to a number A as ||P| — 0, write A =

HIIDiHmOR(f, P,{&}), if for any € > 0, there is § > 0 such that
%

‘A—R(f,P, {‘fl})| <e
whenever || P|| < § and for any & € [xi—1, z;].

Proposition 3.2. Let f be a function defined on [a,b]. If the limit ”}ji”mOR(f, P {&}) = A exists,
—>

then f is automatically bounded.

Proof. Suppose that f is unbounded. Then by the assumption, there exists a partition P : a = zg <
oo < xp = bsuch that | Y ), f(&)Ax,| < 14 |A] for any & € [zx_1,xx]. Since f is unbounded, we
may assume that f is unbounded on [a, z;]. In particular, we choose & = zy, for k = 2, ...,n. Also, we
can choose {; € [a, z1] such that

[F(ED| A > 1+ |A] + | Y flag)Azyl.
k=2

It leads to a contradiction because we have 1+ [A| > |f(&)|Ax1 — | > jp_s f(zk)Azg|. The proof is
finished. .

Lemma 3.3. f € R|a,b] if and only if for any € > 0, there is 6 > 0 such that U(f,P) — L(f,P) < ¢
whenever ||P|| < 4.

Proof. The converse follows from Theorem 1.8.

Assume that f is integrable over [a, b]. Let € > 0. Then there is a partition Q : a = yo < ... < y; = bon
[a,b] such that U(f,Q) — L(f,Q) < . Now take 0 < 6 < £/l. Suppose that P:a =129 < ... <2, =b
with ||P|| < . Then we have

U(f,P)—L(f,P)=1+11I
where
I= Z w;(f, P)Ax;;
:QN[zi—1,2;]=0
and
IT = > wilf,P)A
QN[ —1,x;]#0
Notice that we have
I<U(f,Q)—L(f,Q) <e
and
m<M-my Y Aa:ig(M—m)-2l-§:2(M—m)e.
QN [xi—1,2:]£0
The proof is finished. ]
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Theorem 3.4. f € Rla,b] if and only if the Riemann sum R(f, P,{&}) is convergent. In this case,
b
R(f, P,{&}) converges to / f(x)dx as ||P|| — 0.

Proof. For the proof (=) : we first note that we always have

and ,
L(f,P) < / f(z)dz < U(f, P)

for any partition P and &; € [z;_1, z;].
Now let € > 0. Lemma 3.3 gives 6 > 0 such that U(f, P) — L(f, P) < € as ||P|| < d. Then we have

b
| / f(x)dz — R(f,P.{&})] < ¢

b
as ||P|| < 6 and & € [x;—1, ;). The necessary part is proved and R(f, P, {&;}) converges to / f(z)dz.
For (<) : assume that there is a number A such that for any € > 0, there is 6 > 0, we havea
A—e<R(f,P{&}) <A+e

for any partition P with |P|| < ¢ and & € [zi—1,x].

Notice that f is automatically bounded in this case by Proposition 3.2.

Now fix a partition P with ||P|| < 0. Then for each [z;_1,x;], choose & € [zi_1,x;] such that
M;(f, P) —e < f(&;). This implies that we have

U(f,P)—e(b—a) < R(f,P,{&}) < A+e.

So we have shown that for any € > 0, there is a partition P such that

(3.1) /bf(x)d:ngU(f,P) <A+e(l+b—a)

By considering —f, note that the Riemann sum of —f will converge to —A. The inequality 3.1 will
imply that for any € > 0, there is a partition P such that

b b
A—5(1+b—a)§/f(x)dxﬁ/f(x)dx§A+5(1+b—a).
The proof is finished. O

Theorem 3.5. Let f € R[c,d] and let ¢ : [a,b] — [c,d] be a strictly increasing C* function with
fla) =c and f(b) =d.

Then f o ¢ € Rla,b], moreover, we have

d b
/ f(z)dz = / (o) ().

Proof. Let A = fcd f(x)dzx. By Theorem 3.4, we need to show that for all € > 0, there is ¢ > 0 such
that

[A =" F(6(&R) (&) Dti| < &

for all & € [tx—1,tx] whenever Q :a =ty < ... < t, = b with ||Q] < 0.
Now let € > 0. Then by Lemma 3.3 and Theorem 3.4, there is §; > 0 such that

(3:2) A= flm)Day| <&
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and
(3.3) > wi(f, P)Ary <e

for all n € [zk—1,xk] whenever P :c=xy < ... < zp, = d with | P|| < d;.

Now put = = ¢(t) for ¢ € [a,b].

Now since ¢ and ¢’ are continuous on [a, b], there is 6 > 0 such that |¢(t) — ¢(t')] < 01 and |¢'(t) —
¢ ()| < e for all t,t" infa,b] with |t —t'| <.

Now let Q :a =1ty < ... < tp, = b with ||Q]] <. If we put z = ¢(tx), then P:c=2¢ < .... < 2, = d
is a partition on [¢,d] with || P|| < d; because ¢ is strictly increasing.

Note that the Mean Value Theorem implies that for each [tx_1,tx], there is & € (tk—1,tx) such that

Axy, = ¢(tg) — d(tp—1) = ¢'(§5) Aty
This yields that
(34) | Az — @' (&) Aly] < eAty,

for any & € [ty_1,t] for all kK =1,...,m because of the choice of §.
Now for any & € [tk—1,tk], we have

A= F(B(&))d (&) Oti] < |A— Zf ¢' (&) At
(3.5) HID D F OGN ()AL — > F(S(E))S (&) At
+1> f<¢<£z>>¢’<5k>mk = F(6(&r)P (&) At

Notice that inequality 3.2 implies that

|A— Zf ¢ () Dty| = |A - Zf (&) Dwy| <e.

Also, since we have |¢/ (&) — ¢'(&x)| < € for all k =1, .., m, we have

1D FOENS (E) At — > F($(0) (&) Ati| < M(b— a)e

where |f(x)| < M for all z € [, d].
On the other hand, by using inequality 3.4 we have

| (&) Dtr| < Ay + ety

for all k. This, together with inequality 3.3 imply that

1> F (@GN () Atk — > F(B(6R)) (&) At
<Y wn(f, P (&) At (o $(60), ¢(6r) € [wh, )

< Zwk f, A.%'k + &?Atk)
<e+2M(b—a)e.

Finally by inequality 3.5, we have
A - Zf ¢ (&) Dti| < e+ M(b—a)e +e+2M(b— a)e.

The proof is finished. U]



4. IMPROPER RIEMANN INTEGRALS

Definition 4.1. Let —0co < a < b < 0.

11

(i) Let f be a function defined on [a,00). Assume that the restriction f|io ) is integrable over

[e%9) T
[a,T] for all T > a. Put / f = lim [ if this limit exists.

T—oo Jq

Similarly, we can define ffoo fif f is defined on (—o0, ).

b
(i) If f is defined on (a,b] and fli.p € Rlc,b] for all a < c < b. Put/ f =

exists.

Similarly, we can define f;f if f is defined on [a,b).

b

lim foaf it
c—a+ J.

(iii) As f is defined on R, if fooof and fSOOf both exist, then we put ffooof = ff)oof + fooo f-
In the cases above, we call the resulting limits the improper Riemann integrals of f and say that the

integrals are convergent.

Example 4.2. Define (formally) an improper integral T'(s) ( called the T'-function) as follows:

I'(s) ::/ 5 e dy
0

for s € R. Then I'(s) is convergent if and only if s > 0.

Proof. Put I(s) := fol 2~ le™*dx and I1(s) := [[°a* te “dz. We first claim that the integral I1(s)

is convergent for all s € R.

In fact, if we fix s € R, then we have
ZL‘S_l
rlgIolo GI/Q

So there is M > 1 such that ”éi—;; <1 for all x > M. Thus we have

o0 o
0< / 2 e dx < / e *2dr < .
M M

=0.

Therefore we need to show that the integral I(s) is convergent if and only if s > 0.
Note that for 0 < n < 1, we have

! ! 11— if s —1# —1;
OS/ ifs_le_xdl‘g/ xs_ldﬂj: {5( 77) I s 7é )
n n

—1Inn otherwise .

1
Thus the integral I(s) = lim / 25 te™"dzx is convergent if s > 0.
n—0+ n

Conversely, we also have

_1 .
/lxslexdx>el/1xsldx: {63(1_778) 1f$—17£—1;
n n

—e llnp otherwise .

So if s < 0, then fnl x5 te~%dx is divergent as n — 04. The result follows.

REFERENCES

[1] R.G. Bartle and D.R. Sherbert, Introduction to real analysis, Fourth edition, Wiley, (2011).
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5. UNIFORM CONVERGENCE OF A SEQUENCE OF DIFFERENTIABLE FUNCTIONS
Proposition 5.1. Let f, : (a,b) — R be a sequence of functions. Assume that it satisfies the
following conditions:

(i) : fn(z) point-wise converges to a function f(x) on (a,b);
(ii) : each f, is a C* function on (a,b);
(i1i) : fl, — g uniformly on (a,b).
Then f is a C'-function on (a,b) with f' = g.
Proof. Fix ¢ € (a,b). Then for each z with ¢ < = < b (similarly, we can prove it in the same way as
a < x < c¢), the Fundamental Theorem of Calculus implies that

fulz) = /z f(@)dt + fn(c).

Since f], — ¢ uniformly on (a,b), we see that

/j fr(t)dt — /Cx g(t)dt.

This gives
(5.1) fo) = [ " o)t + (o).

for all x € (c,b). Similarly, we have f(z) = [T g(t)dt + f(c) for all z € (a,b).
On the other hand, g is continuous on (a,b) since each f], is continuous and f; — ¢ uniformly on
(a,b). Equation 5.1 will tell us that f’ exists and f’ = g on (a,b). The proof is finished. O

Proposition 5.2. Let (f,) be a sequence of differentiable functions defined on (a,b). Assume that
(i): there is a point ¢ € (a,b) such that lim f,,(c) exists;
(ii): fl converges uniformly to a function g on (a,b).
Then
(a): fn converges uniformly to a function f on (a,b);
(b): f is differentiable on (a,b) and f' = g.

Proof. For Part (a), we will make use the Cauchy theorem.
Let € > 0. Then by the assumptions (i) and (i7), there is a positive integer N such that

|[fm(c) = fulc)l < and |f;,(x) — fo(z)| <e
for all m,n > N and for all € (a,b). Now fix ¢ < z < b and m,n > N. To apply the Mean Value
Theorem for f,, — f, on (¢, z), then there is a point £ between ¢ and x such that

(5-2) fm(@) = fu(z) = fin(c) = fale) + ([ (&) = fr(&))(z — o).
This implies that

[fm (@) = fu(@)] < [fim(c) = fulO)l + £ () = fo(llz —c| <e+ (b—a)e
for all m,n > N and for all z € (¢,b). Similarly, when z € (a,c), we also have

|fm(x) - fn(a:)‘ <e+ (b —a)e.
So Part (a) follows.
Let f be the uniform limit of (f,,) on (a,b)
For Part (b), we fix u € (a,b). We are going to show
S~ )

T—U r—Uu

= g(u).
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Let € > 0. Since (f}) is uniformly convergent on (a,b), there is N € N such that
(5:3) (@) = fa(a)l <e

for all m,n > N and for all z € (a,b)
Note that for all m > N and = € (a,b) \ {u}, applying the Mean value Theorem for f,, — fx as before,

we have
fm(x) = I (@) _ fm(u) = fn(w)

T —u T —u
for some & between u and =x.
So Eq.5.3 implies that

(fm (&) = fn (&)

‘fm(fv) — fm(uw) _ In(@) = N(u)

A4 <
(54) r—u Tr—u |se
for all m > N and for all z € (a,b) with x # u.
Taking m — oo in Eq.5.4, we have

S =5 ) = Ix),

r—Uu r—Uu

Hence we have

<oy (DI )

So if we can take 0 < d such that |W — fy()| < e for 0 < |z —u| < J, then we have
f(z) = fu)

r—Uu

(5.5) | — x| <2

for 0 < |z —u| < 6. On the other hand, by the choice of N, we have |f} (v) — fx(y)| < € for all
y € (a,b) and m > N. So we have |g(u) — fj(u)| < e. This together with Eq.5.5 give

flx)— f(u
|M — g(u)| < 3¢
T —u
as 0 < |z —u| < 4, that is we have
T—u T — U
The proof is finished. ]

Remark 5.3. The uniform convergence assumption of (f)) in Propositions 5.1 and 5.2 is essential.

Example 5.4. Let fu(z) := 1557 for v € (—1,1). Then we have
1 —n2z? 0 if © # 0;
= lim f/ =lim———— = ’
g(x) :=lim f},(z) := lim L {1 if o =0.
On the other hand, f, — 0 uniformly on (—=1,1). In fact, if f}(1/n) =0 for alln = 1,2, .., then f,
attains the mazimal value fo(1/n) = 5= at x = 1/n for each n = 1,... and hence, f, — 0 uniformly

on (—1,1).
So Propositions 5.1 and 5.2 does not hold. Note that (f]) does not converge uniformly to g on (—1,1).
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6. DINI’S THEOREM

Recall that a subset A of R is said to be compact if for any family open intervals cover {J;};cs of
A, that is, each J; is and open interval and A C |J;c; Ji, we can find finitely many .J; , ..., J;, such
that A C J;, U--- U Jiy.

The following is a very important result.

Theorem 6.1. A subset A of R is compact if and only if any sequence (xy) in A has a convergent
subsequence (zy,) such that limy x,, € A. In particular, every closed and bounded interval is compact
by using the Bolzano- Weierstrass Theorem.
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Proposition 6.2. (Dini’s Theorem): Let A be a compact subset of R and f, : A — R be a sequence
of continuous functions defined on A. Suppose that
(i) for each x € A, we have fp(x) < foy1(z) for alln =1,2...;
(ii) the pointwise limit f(x) := lim, f,(x) exists for all x € A;
(iii) f is continuous on A.
Then f, converges to f uniformly on A.
Proof. Let g, := f — f,, defined on A. Then each g, is continuous and g,(z) | 0 pointwise on A. It

suffices to show that g, converges to 0 uniformly on A.
Method I: Suppose not. Then there is € > 0 such that for all positive integer N, we have

(6.1) gn(Tn) > €.
for some n > N and some x, € A. From this, by passing to a subsequence we may assume that
gn(xyn) > € for all n = 1,2, .... Then by using the compactness of A, Theorem 6.1 gives a convergent

subsequence (zp, ) of (z,) in A. Let z := lilgnxnk € A. Since gn,(2) | 0 as k — oo. So, there is a
positive integer K such that 0 < g, (2) < €/2. Since gp, is continuous at z and lim z,,, = z, we have
(2

lim gp,, (Tn;) = gny (2). So, we can choose i large enough such that i > K
7

Ini(Tn;) < gng (Tn,) <€/2

because g (zn,) L 0 as m — oco. This contradicts to the Inequality 6.1.

Method II: Let ¢ > 0. Fix x € A. Since gn(x) | 0, there is N(z) € N such that 0 < g,(z) < € for
all n > N(z). Since gy, is continuous, there is 6(z) > 0 such that gy(,)(y) < € for all y € A with
|z —y| < 0(x). If we put Jy := (x—0(x),x+d(x)), then A C |J,c4 Jo. Then by the compactness of A,
there are finitely many z1, ..., &, in A such that A C J;, U---UJ,,,. Put N := max(N(z1), ..., N(z,)).
Now if y € A, then y € J(z;) for some 1 <14 < m. This implies that

9n(Y) < gN@Eo(Y) < e
for all n > N > N(z;). O

REFERENCES
[1] R.G. Bartle and D.R. Sherbert, Introduction to real analysis, Fourth edition, Wiley, (2011).



